Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(23): e0151021, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34524900

RESUMO

Targeted gene insertion or replacement is a promising genome-editing tool for molecular breeding and gene engineering. Although CRISPR/Cas9 works well for gene disruption and deletion in Ganoderma lucidum, targeted gene insertion and replacement remain a serious challenge due to the low efficiency of homologous recombination (HR) in this species. In this work, we demonstrate that the DNA double-strand breaks induced by Cas9 were mainly repaired via the nonhomologous end joining (NHEJ) pathway, at a frequency of 96.7%. To establish an efficient target gene insertion and replacement tool in Ganoderma, we first inactivated the NHEJ pathway via disruption of the Ku70 gene (ku70) using a dual single guide RNA (sgRNA)-directed gene deletion method. Disruption of the ku70 gene significantly decreased NHEJ activity in G. lucidum. Moreover, ku70 disruption strains exhibited 96.3% and 93.1% frequencies of targeted gene insertion and replacement, respectively, when target DNA with the orotidine 5'-monophosphate decarboxylase (ura3) gene and 1.5-kb homologous 5'- and 3'-flanking sequences was used as a donor template, compared to 3.3% and 0%, respectively, at these targeted sites for a control strain (Cas9 strain). Our results indicated that ku70 disruption strains were efficient recipients for targeted gene insertion and replacement. This tool will advance our understanding of functional genomics in G. lucidum. IMPORTANCE Functional genomic studies in Ganoderma have been hindered by the absence of adequate genome-engineering tools. Although CRISPR/Cas9 works well for gene disruption and deletion in G. lucidum, targeted gene insertion and replacement have remained a serious challenge due to the low efficiency of HR in these species, although such precise genome modifications, including site mutations, site-specific integrations, and allele or promoter replacements, would be incredibly valuable. In this work, we inactivated the NHEJ repair mechanism in G. lucidum by disrupting the ku70 gene using the CRISPR/Cas9 system. Moreover, we established a target gene insertion and replacement method in ku70-disrupted G. lucidum that possessed high-efficiency gene targeting. This technology will advance our understanding of the functional genomics of G. lucidum.


Assuntos
Sistemas CRISPR-Cas , Mutagênese Insercional , Reishi , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Genômica , Reishi/genética
2.
Microb Biotechnol ; 13(2): 386-396, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31958883

RESUMO

Ganoderma lucidum is an important medicinal mushroom in traditional Chinese medicine. However, the lack of adequate genetic tools has hindered molecular genetic research in and the genetic modification of this species. Here, we report that the presence of an intron is necessary for the efficient expression of the heterologous phosphinothricin-resistance and green fluorescent protein genes in G. lucidum. Moreover, we improved the CRISPR/Cas9-mediated gene disruption frequency in G. lucidum by adding an intron upstream of the Cas9 gene. Our results showed that the disruption frequency of the orotidine 5'-monophosphate decarboxylase gene (ura3) in transformants containing the glyceraldehyde-3-phosphate dehydrogenase gene intron in the Cas9 plasmid is 14-18 in 107 protoplasts, which is 10.6 times higher than that in transformants without any intron sequence. Furthermore, genomic fragment deletions in the ura3 and GL17624 genes were achieved via a dual sgRNA-directed CRISPR/Cas9 system in G. lucidum. We achieved a ura3 deletion frequency of 36.7% in G. lucidum. The developed method provides a powerful platform to generate gene deletion mutants and will facilitate functional genomic studies in G. lucidum.


Assuntos
Sistemas CRISPR-Cas , Reishi , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Deleção de Genes , Edição de Genes , Reishi/genética
3.
J Biotechnol ; 293: 8-16, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30703468

RESUMO

Amine transaminases are a class of efficient and industrially-desired biocatalysts for the production of chiral amines. In this study, stabilized variants of the (R)-selective amine transaminase from Aspergillus terreus (AT-ATA) were constructed by consensus mutagenesis. Using Consensus Finder (http://cbs-kazlab.oit.umn.edu/), six positions with the most prevalent amino acid (over 60% threshold) among the homologous family members were identified. Subsequently, these six residues were individually mutated to match the consensus sequence (I77 L, Q97E, H210N, N245D, G292D, and I295 V) using site-directed mutagenesis. Compared to that of the wild-type, the thermostability of all six single variants was improved. The H210N variant displayed the largest shift in thermostability, with a 3.3-fold increase in half-life (t1/2) at 40 °C, and a 4.6 °C increase in T5010 among the single variants. In addition, the double mutant H210N/I77L displayed an even larger shift with 6.1-fold improvement of t1/2 at 40 °C, and a 6.6 °C increase in T5010. Furtherly, the H210N/I77L mutation was introduced into the previously engineered thermostable AT-ATA by the introduction of disulfide bonds, employing B-factor and folding free energy (ΔΔGfold) calculations. Our results showed that the combined variant H210N/I77L/M150C-M280C had the largest shift in thermostability, with a 16.6-fold improvement of t1/2 and a 11.8 °C higher T5010.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/genética , Transaminases/genética , Aminas/química , Catálise , Estabilidade Enzimática , Escherichia coli/genética , Proteínas Fúngicas/química , Temperatura Alta , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estereoisomerismo , Transaminases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...